Sasson, C., Rogers, M. A., Dahl, J., & Kellermann, A. L. (2010). Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circulation. Cardiovascular quality and outcomes, 3(1), 63–81. https://doi.org/10.1161/CIRCOUTCOMES.109.889576
Primi R, Bendotti S, Currao A, et al. Use of Mechanical Chest Compression for Resuscitation in Out-Of-Hospital Cardiac Arrest-Device Matters: A Propensity-Score-Based Match Analysis. J Clin Med. 2023;12(13):4429. Published 2023 Jun 30. doi:10.3390/jcm12134429
Duchateau FX, Gueye P, Curac S, et al. Effect of the AutoPulse automated band chest compression device on hemodynamics in out-of-hospital cardiac arrest resuscitation. Intensive Care Med. 2010: 36(7):1256-1260
Halperin, H. R., Paradis, N., Ornato, J. P., Zviman, M., LaCorte, J., Lardo, A., & Kern, K. B. (2004). Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: Improved hemodynamics and mechanisms. Journal of the American College of Cardiology, 44(11), 2214–2220. https://doi.org/10.1016/j.jacc.2004.08.061
Wik L, Olsen JA, Persse D, Sterz F, Lozano M Jr, Brouwer MA, Westfall M, Souders CM, Malzer R, van Grunsven PM, Travis DT, Whitehead A, Herken UR, Lerner EB. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation. 2014 Jun;85(6):741-8. doi: 10.1016/j.resuscitation.2014.03.005. Epub 2014 Mar 15. Erratum in: Resuscitation. 2014 Sep;85(9):1306. PMID: 24642406.
Olsen, J. A., Lerner, E. B., Persse, D., Sterz, F., Lozano, M., Jr, Brouwer, M. A., Westfall, M., van Grunsven, P. M., Travis, D. T., Herken, U. R., Brunborg, C., & Wik, L. (2016). Chest compression duration influences outcome between integrated load-distributing band and manual CPR during cardiac arrest. Acta anaesthesiologica Scandinavica, 60(2), 222–229. https://doi.org/10.1111/aas.12605
Westfall M, Krantz S, Mullin C, Kaufman C. Mechanical versus manual chest compressions in out-of-hospital cardiac arrest: a meta-analysis. Crit Care Med. 2013 Jul;41(7):1782-9. doi: 10.1097/CCM.0b013e31828a24e3. PMID: 23660728.
Frey, M., Lötscher, S., Theiler, L. et al. Arterial blood pressure differences between AutoPulse™ and Lucas2™during mechanic cardiopulmonary resuscitation. Scand J Trauma Resusc Emerg Med 24, 64 (2016). https://doi.org/10.1186/s13049-016-0253-0
Gorący, J., Stachowiak, P., Krejczy, A., Piątek, P., & Gorący, I. (2022). Efficacy of AutoPulse for Mechanical Chest Compression in Patients with Shock-Resistant Ventricular Fibrillation. International journal of environmental research and public health, 19(5), 2557. https://doi.org/10.3390/ijerph19052557
Morgan, S., Gray, J. J., Sams, W., Uhl, K., Gundrum, M., & McMullan, J. (2023). LUCAS Device Use Associated with Prolonged Pauses during Application and Long Chest Compression Intervals. Prehospital emergency care, 1–4. Advance online publication. https://doi.org/10.1080/10903127.2023.2183294
Sheraton, M., Columbus, J., Surani, S., Chopra, R., & Kashyap, R. (2021). Effectiveness of Mechanical Chest Compression Devices over Manual Cardiopulmonary Resuscitation: A Systematic Review with Meta-analysis and Trial Sequential Analysis. The western journal of emergency medicine, 22(4), 810–819. https://doi.org/10.5811/westjem.2021.3.50932
Manoukian, M. A. C., Rose, J. S., Brown, S. K., Wynia, E. H., Julie, I. M., & Mumma, B. E. (2022). Development of a model to measure the effect of off-balancing vectors on the delivery of high-quality CPR in a moving vehicle. The American journal of emergency medicine, 61, 158–162. https://doi.org/10.1016/j.ajem.2022.08.059
Lv, G. W., Hu, Q. C., Zhang, M., Feng, S. Y., Li, Y., Zhang, Y., Zhang, Y. Y., & Wang, W. J. (2022). Effect of real-time feedback on patient's outcomes and survival after cardiac arrest: A systematic review and meta-analysis. Medicine, 101(37), e30438. https://doi.org/10.1097/MD.0000000000030438
Lee, P. H., Lai, H. Y., Hsieh, T. C., & Wu, W. R. (2023). Using real-time device-based visual feedback in CPR recertification programs: A prospective randomised controlled study. Nurse education today, 124, 105755. https://doi.org/10.1016/j.nedt.2023.105755
Picard, C., Yang, B. G., Norris, C., McIntosh, S., & Douma, M. J. (2021). Cardiopulmonary Resuscitation Feedback: A Comparison of Device-Measured and Self-Assessed Chest Compression Quality. Journal of emergency nursing, 47(2), 333–341.e1. https://doi.org/10.1016/j.jen.2020.10.003
Langhelle, A., Strømme, T., Sunde, K., Wik, L., Nicolaysen, G., & Steen, P. A. (2002). Inspiratory impedance threshold valve during CPR. Resuscitation, 52(1), 39–48. https://doi.org/10.1016/S0300-9572(01)00442-7
Lurie, K. G., Mulligan, K. A., McKnite, S., Detloff, B., Lindstrom, P., & Lindner, K. H. (1998). Optimizing standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Chest, 113(4), 1084–1090. https://doi.org/10.1378/chest.113.4.1084
Pirrallo, R. G., Aufderheide, T. P., Provo, T. A., & Lurie, K. G. (2005). Effect of an inspiratory impedance threshold device on hemodynamics during conventional manual cardiopulmonary resuscitation. Resuscitation, 66(1), 13–20. https://doi.org/10.1016/j.resuscitation.2004.12.027
Yannopoulus D, Aufderheide TP, Abella BS, et al. Quality CPR: An important effect modifier in cardiac arrest clinical outcomes and intervention effectiveness trials. Resuscitation. 2015; 94:106-113
Lou, J., Tian, S., Kang, X., Lian, H., Liu, H., Zhang, W., Peran, D., & Zhang, J. (2023). Airway management in out-of-hospital cardiac arrest: A systematic review and network meta-analysis. The American journal of emergency medicine, 65, 130–138. https://doi.org/10.1016/j.ajem.2022.12.029
Tang, Y., Sun, M., & Zhu, A. (2022). Outcome of cardiopulmonary resuscitation with different ventilation modes in adults: A meta-analysis. The American journal of emergency medicine, 57, 60–69. https://doi.org/10.1016/j.ajem.2022.04.027
Steffen, R., Hischier, S., Roten, F. M., Huber, M., & Knapp, J. (2023). Airway management during ongoing chest compressions-direct vs. video laryngoscopy. A randomised manikin study. PloS one, 18(2), e0281186. https://doi.org/10.1371/journal.pone.0281186
Sun, G., Wojcik, S., Noce, J., Cochran-Caggiano, N., DeSantis, T., Friedman, S., Cooney, D. R., & Knutsen, C. (2023). Are Pediatric Manual Resuscitators Only Fit for Pediatric Use? A Comparison of Ventilation Volumes in a Moving Ambulance. Prehospital emergency care, 27(4), 501–505. https://doi.org/10.1080/10903127.2022.2066235
Farkus J. (July 2, 2014). Preoxygenation and apneic oxygenation using a nasal cannula. PulmCrit (EMCrit).
Kjaergaard B, Bavarskis E, Manusdottir SO, et al. Four ways to ventilate during cardiopulmonary resuscitation in a porcine model: a randomized study. Scandinavian Journal Trauma Resuscitation Emergency Medicine. 2016; 24: 67.
Charlton K, McClelland G, Millican K, Haworth D, Aitken-Fell P, Norton M. The impact of introducing real time feedback on ventilation rate and tidal volume by ambulance clinicians in the North East in cardiac arrest simulations. Resuscitation Plus. 2021;6:100130. doi:10.1016/j.resplu.2021.100130
Chicote B, Aramendi E, Irusta U, Owens P, Daya M, Idris A. Value of capnography to predict defibrillation success in out-of-hospital cardiac arrest. Resuscitation. 2019 May;138:74-81. doi: 10.1016/j.resuscitation.2019.02.028. Epub 2019 Mar 2. PMID: 30836170; PMCID: PMC6504568.
Frigerio L, Baldi E, Aramendi E, Chicote B, Irusta U, Contri E, Palo A, Compagnoni S, Fracchia R, Iotti G, Oltrona Visconti L, Savastano S; Lombardia Cares Researchers. End-tidal carbon dioxide (ETCO2) and ventricular fibrillation amplitude spectral area (AMSA) for shock outcome prediction in out-of-hospital cardiac arrest. Are they two sides of the same coin? Resuscitation. 2021 Mar;160:142-149. doi: 10.1016/j.resuscitation.2020.10.032. Epub 2020 Nov 10. PMID: 33181229.
Hubble, M. W., Van Vleet, L., Taylor, S., Bachman, M., Williams, J. G., Vipperman, R., & Renkiewicz, G. K. (2021). Predictive Utility of End-Tidal Carbon Dioxide on Defibrillation Success in Out-of-Hospital Cardiac Arrest. Prehospital emergency care : official journal of the National Association of EMS Physicians and the National Association of State EMS Directors, 25(5), 697–705. https://doi.org/10.1080/10903127.2020.1828518
Segal, N., Metzger, A., Moore, J., India, L., Lick, M., Berger, P., Tang, W., Benditt, D., & Lurie, K. (2017). Correlation of end tidal carbon dioxide, amplitude spectrum area, and coronary perfusion pressure in a porcine model of cardiac arrest. Physiological Reports, 5. https://doi.org/10.14814/phy2.13401
Simone Savastano, Enrico Baldi, Maurizio Raimondi, Alessandra Palo, Mirko Belliato, Elisa Cacciatore, Valentina Corazza, Simone Molinari, Fabrizio Canevari, Aurora I Danza, Gaetano M De Ferrari, Giorgio Antonio Iotti, Luigi Oltrona Visconti. End-tidal carbon dioxide and defibrillation success in out-of-hospital cardiac arrest. Resuscitation. 2017 Dec;121:71-75. doi: 10.1016/j.resuscitation.2017.09.010. Epub 2017 Sep 21
Jung, J., Rice, J., & Bord, S. (2018). Rethinking the role of epinephrine in cardiac arrest: the PARAMEDIC2 trial. Annals of translational medicine, 6(Suppl 2), S129. https://doi.org/10.21037/atm.2018.12.31
Perkins, G. D., Ji, C., Deakin, C. D., Quinn, T., Nolan, J. P., Scomparin, C., Regan, S., Long, J., Slowther, A., Pocock, H., Black, J., Moore, F., Fothergill, R. T., Rees, N., O'Shea, L., Docherty, M., Gunson, I., Han, K., Charlton, K., Finn, J., … PARAMEDIC2 Collaborators (2018). A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest. The New England journal of medicine, 379(8), 711–721. https://doi.org/10.1056/NEJMoa1806842
Zhong, H., Yin, Z., Kou, B., Shen, P., He, G., Huang, T., Liang, J., Huang, S., Huang, J., Zhou, M., & Deng, R. (2023). Therapeutic and adverse effects of adrenaline on patients who suffer out-of-hospital cardiac arrest: a systematic review and meta-analysis. European journal of medical research, 28(1), 24. https://doi.org/10.1186/s40001-022-00974-8
Wongtanasarasin, W., Srisurapanont, K., & Nishijima, D. K. (2023). How Epinephrine Administration Interval Impacts the Outcomes of Resuscitation during Adult Cardiac Arrest: A Systematic Review and Meta-Analysis. Journal of clinical medicine, 12(2), 481. https://doi.org/10.3390/jcm12020481
Fukuda, T., Kaneshima, H., Matsudaira, A., Chinen, T., Sekiguchi, H., Ohashi-Fukuda, N., Inokuchi, R., & Kukita, I. (2022). Epinephrine dosing interval and neurological outcome in out-of-hospital cardiac arrest. Perfusion, 37(8), 835–846. https://doi.org/10.1177/02676591211025163
Ashburn, N. P., Beaver, B. P., Snavely, A. C., Nazir, N., Winslow, J. T., Nelson, R. D., Mahler, S. A., & Stopyra, J. P. (2022). One and Done Epinephrine in Out-of-Hospital Cardiac Arrest? Outcomes in a Multiagency United States Study. Prehospital emergency care, 1–7. Advance online publication. https://doi.org/10.1080/10903127.2022.2120135
Yang, B. Y., Bulger, N., Chocron, R., Counts, C. R., Drucker, C., Yin, L., Parayil, M., Johnson, N. J., Sotoodehenia, N., Kudenchuk, P. J., Sayre, M. R., & Rea, T. D. (2022). Analysis of Epinephrine Dose, Targeted Temperature Management, and Neurologic and Survival Outcomes Among Adults With Out-of-Hospital Cardiac Arrest. JAMA network open, 5(8), e2226191. https://doi.org/10.1001/jamanetworkopen.2022.26191
Enzan, N., Hiasa, K. I., Ichimura, K., Nishihara, M., Iyonaga, T., Shono, Y., Tohyama, T., Funakoshi, K., Kitazono, T., & Tsutsui, H. (2022). Delayed administration of epinephrine is associated with worse neurological outcomes in patients with out-of-hospital cardiac arrest and initial pulseless electrical activity: insight from the nationwide multicentre observational JAAM-OHCA (Japan Association for Acute Medicine) registry. European heart journal. Acute cardiovascular care, 11(5), 389–396. https://doi.org/10.1093/ehjacc/zuac026
Yang, S. C., Hsu, Y. H., Chang, Y. H., Chien, L. T., Chen, I. C., & Chiang, W. C. (2023). Epinephrine administration in adults with out-of-hospital cardiac arrest: A comparison between intraosseous and intravenous route. The American journal of emergency medicine, 67, 63–69. https://doi.org/10.1016/j.ajem.2023.02.003
Fernando, S. M., Mathew, R., Sadeghirad, B., Rochwerg, B., Hibbert, B., Munshi, L., Fan, E., Brodie, D., Di Santo, P., Tran, A., McLeod, S. L., Vaillancourt, C., Cheskes, S., Ferguson, N. D., Scales, D. C., Lin, S., Sandroni, C., Soar, J., Dorian, P., Perkins, G. D., … Nolan, J. P. (2023). Epinephrine in Out-of-Hospital Cardiac Arrest: A Network Meta-analysis and Subgroup Analyses of Shockable and Nonshockable Rhythms. Chest, S0012-3692(23)00165-4. Advance online publication. https://doi.org/10.1016/j.chest.2023.01.033
Garfinkel, E., Michelsen, K., Johnson, B., Margolis, A., & Levy, M. (2022). Temporal Changes in Epinephrine Dosing in Out-of-Hospital Cardiac Arrest: A Review of EMS Protocols across the United States. Prehospital and disaster medicine, 37(6), 832–835. https://doi.org/10.1017/S1049023X22001418
Jaeger, D., Kosmopoulos, M., Voicu, S., Kalra, R., Gaisendrees, C., Schlartenberger, G., Bartos, J. A., & Yannopoulos, D. (2023). Cerebral hemodynamic effects of head-up CPR in a porcine model. Resuscitation, 193, 110039. https://doi.org/10.1016/j.resuscitation.2023.110039
Moore, J. C., Pepe, P. E., Scheppke, K. A., Lick, C., Duval, S., Holley, J., Salverda, B., Jacobs, M., Nystrom, P., Quinn, R., Adams, P. J., Hutchison, M., Mason, C., Martinez, E., Mason, S., Clift, A., Antevy, P. M., Coyle, C., Grizzard, E., Garay, S., … Labarère, J. (2022). Head and thorax elevation during cardiopulmonary resuscitation using circulatory adjuncts is associated with improved survival. Resuscitation, 179, 9–17. https://doi.org/10.1016/j.resuscitation.2022.07.039
Mohan M, Swaminathan AK. Heads Up! Data Dredging Coming Through: Heads Up Cardiopulmonary Resuscitation Does Not Improve Outcomes: February 2023 Annals of Emergency Medicine Journal Club. Ann Emerg Med. 2023;81(2):244-245. doi:10.1016/j.annemergmed.2022.12.018
Varney, J., Motawea, K. R., Mostafa, M. R., AbdelQadir, Y. H., Aboelenein, M., Kandil, O. A., Ibrahim, N., Hashim, H. T., Murry, K., Jackson, G., Shah, J., Boury, M., Awad, A. K., Patel, P., Awad, D. M., Rozan, S. S., & Talat, N. E. (2022). Efficacy of heads-up CPR compared to supine CPR positions: Systematic review and meta-analysis. Health science reports, 5(3), e644. https://doi.org/10.1002/hsr2.644
Segond, N., Terzi, N., Duhem, H., Bellier, A., Aygalin, M., Fuste, L., Viglino, D., Fontecave-Jallon, J., Lurie, K., Guérin, C., & Debaty, G. (2023). Mechanical ventilation during cardiopulmonary resuscitation: influence of positive end-expiratory pressure and head-torso elevation. Resuscitation, 185, 109685. https://doi.org/10.1016/j.resuscitation.2022.109685
Levy, Y., Hutin, A., Polge, N., Lidouren, F., Fernandez, R., Kohlhauer, M., Leger, P. L., Rambaud, J., Debaty, G., Lurie, K., Ghaleh, B., Lamhaut, L., & Tissier, R. (2022). HEAD AND THORAX ELEVATION PREVENTS THE RISE OF INTRACRANIAL PRESSURE DURING EXTRACORPOREAL RESUSCITATION IN SWINE. Shock (Augusta, Ga.), 58(3), 236–240. https://doi.org/10.1097/SHK.0000000000001971
Tan, Y. K., Han, M. X., Tan, B. Y., Sia, C. H., Goh, C. X. Y., Leow, A. S., Hausenloy, D. J., Chan, E. S. Y., Ong, M. E. H., & Ho, A. F. W. (2022). The role of head-up cardiopulmonary resuscitation in sudden cardiac arrest: a systematic review and meta-analysis. Annals of translational medicine, 10(9), 515. https://doi.org/10.21037/atm-21-4984
Bielski, K., Böttiger, B. W., Pruc, M., Gasecka, A., Sieminski, M., Jaguszewski, M. J., Smereka, J., Gilis-Malinowska, N., Peacock, F. W., & Szarpak, L. (2022). Outcomes of audio-instructed and video-instructed dispatcher-assisted cardiopulmonary resuscitation: a systematic review and meta-analysis. Annals of medicine, 54(1), 464–471. https://doi.org/10.1080/07853890.2022.2032314
Missel, A. L., Dowker, S. R., Chiola, M., Platt, J., Tsutsui, J., Kasten, K., Swor, R., Neumar, R. W., Hunt, N., Herbert, L., Sams, W., Nallamothu, B. K., Shields, T., Coulter-Thompson, E. I., & Friedman, C. P. (2023). Barriers to the Initiation of Telecommunicator-CPR during 9-1-1 Out-of-Hospital Cardiac Arrest Calls: A Qualitative Study. Prehospital emergency care, 1–8. Advance online publication. https://doi.org/10.1080/10903127.2023.2183533
Zimmerman, T. M., Neth, M. R., Tanski, M. E., Chess, L., Thompson, K., Jui, J., Sahni, R., Daya, M. R., & Lupton, J. R. (2022). Utilization and Effect of Direct Medical Oversight during Out-of-Hospital Cardiac Arrest. Prehospital emergency care, 1–7. Advance online publication. https://doi.org/10.1080/10903127.2022.2113189
Pepe, P. E., Aufderheide, T. P., Lamhaut, L., Davis, D. P., Lick, C. J., Polderman, K. H., Scheppke, K. A., Deakin, C. D., O'Neil, B. J., van Schuppen, H., Levy, M. K., Wayne, M. A., Youngquist, S. T., Moore, J. C., Lurie, K. G., Bartos, J. A., Bachista, K. M., Jacobs, M. J., Rojas-Salvador, C., Grayson, S. T., … Yannopoulos, D. (2020). Rationale and Strategies for Development of an Optimal Bundle of Management for Cardiac Arrest. Critical care explorations, 2(10), e0214. https://doi.org/10.1097/CCE.0000000000000214
We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.