Advanced Cardiac Resuscitation Consortium
Advanced Cardiac Resuscitation Consortium
  • Home
  • What is ACR?
  • Our History
  • Participating Agencies
  • Leadership Team
  • Protocols and Guidelines
  • Discussion Forum
  • Contact Us
  • References
  • More
    • Home
    • What is ACR?
    • Our History
    • Participating Agencies
    • Leadership Team
    • Protocols and Guidelines
    • Discussion Forum
    • Contact Us
    • References
  • Home
  • What is ACR?
  • Our History
  • Participating Agencies
  • Leadership Team
  • Protocols and Guidelines
  • Discussion Forum
  • Contact Us
  • References

References

Historical Survival from SCA

 Sasson, C., Rogers, M. A., Dahl, J.,  & Kellermann, A. L. (2010). Predictors of survival from  out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circulation. Cardiovascular quality and outcomes, 3(1), 63–81. https://doi.org/10.1161/CIRCOUTCOMES.109.889576 

Automated / Mechanical CPR

Primi R, Bendotti S, Currao A, et al. Use of Mechanical Chest Compression for Resuscitation in Out-Of-Hospital Cardiac Arrest-Device Matters: A Propensity-Score-Based Match Analysis. J Clin Med. 2023;12(13):4429. Published 2023 Jun 30. doi:10.3390/jcm12134429 


Duchateau  FX, Gueye P, Curac S, et al. Effect of the AutoPulse automated band  chest compression device on hemodynamics in out-of-hospital cardiac  arrest resuscitation. Intensive Care Med. 2010: 36(7):1256-1260


Halperin,  H. R., Paradis, N., Ornato, J. P., Zviman, M., LaCorte, J., Lardo, A.,  & Kern, K. B. (2004). Cardiopulmonary resuscitation with a novel  chest compression device in a porcine model of cardiac arrest: Improved  hemodynamics and mechanisms. Journal of the American College of  Cardiology, 44(11), 2214–2220.  https://doi.org/10.1016/j.jacc.2004.08.061


Wik  L, Olsen JA, Persse D, Sterz F, Lozano M Jr, Brouwer MA, Westfall M,  Souders CM, Malzer R, van Grunsven PM, Travis DT, Whitehead A, Herken  UR, Lerner EB. Manual vs. integrated automatic load-distributing band  CPR with equal survival after out of hospital cardiac arrest. The  randomized CIRC trial. Resuscitation. 2014 Jun;85(6):741-8. doi:  10.1016/j.resuscitation.2014.03.005. Epub 2014 Mar 15. Erratum in:  Resuscitation. 2014 Sep;85(9):1306. PMID: 24642406.


Olsen,  J. A., Lerner, E. B., Persse, D., Sterz, F., Lozano, M., Jr, Brouwer,  M. A., Westfall, M., van Grunsven, P. M., Travis, D. T., Herken, U. R.,  Brunborg, C., & Wik, L. (2016). Chest compression duration  influences outcome between integrated load-distributing band and manual  CPR during cardiac arrest. Acta anaesthesiologica Scandinavica, 60(2),  222–229.  https://doi.org/10.1111/aas.12605


Westfall  M, Krantz S, Mullin C, Kaufman C. Mechanical versus manual chest  compressions in out-of-hospital cardiac arrest: a meta-analysis. Crit  Care Med. 2013 Jul;41(7):1782-9. doi: 10.1097/CCM.0b013e31828a24e3.  PMID: 23660728.


Frey,  M., Lötscher, S., Theiler, L. et al. Arterial blood pressure  differences between AutoPulse™ and Lucas2™during mechanic  cardiopulmonary resuscitation. Scand J Trauma Resusc Emerg Med 24, 64  (2016).  https://doi.org/10.1186/s13049-016-0253-0


Gorący, J., Stachowiak, P., Krejczy, A., Piątek, P., & Gorący, I. (2022). Efficacy of AutoPulse for Mechanical Chest Compression in Patients with Shock-Resistant Ventricular Fibrillation. International journal of environmental research and public health, 19(5), 2557. https://doi.org/10.3390/ijerph19052557


Morgan, S., Gray, J. J., Sams, W., Uhl, K., Gundrum, M., & McMullan, J. (2023). LUCAS Device Use Associated with Prolonged Pauses during Application and Long Chest Compression Intervals. Prehospital emergency care, 1–4. Advance online publication. https://doi.org/10.1080/10903127.2023.2183294


Sheraton, M., Columbus, J., Surani, S., Chopra, R., & Kashyap, R. (2021). Effectiveness of Mechanical Chest Compression Devices over Manual Cardiopulmonary Resuscitation: A Systematic Review with Meta-analysis and Trial Sequential Analysis. The western journal of emergency medicine, 22(4), 810–819. https://doi.org/10.5811/westjem.2021.3.50932


Manoukian, M. A. C., Rose, J. S., Brown, S. K., Wynia, E. H., Julie, I. M., & Mumma, B. E. (2022). Development of a model to measure the effect of off-balancing vectors on the delivery of high-quality CPR in a moving vehicle. The American journal of emergency medicine, 61, 158–162. https://doi.org/10.1016/j.ajem.2022.08.059

CPR Feedback

Lv, G. W., Hu, Q. C., Zhang, M., Feng, S. Y., Li, Y., Zhang, Y., Zhang, Y. Y., & Wang, W. J. (2022). Effect of real-time feedback on patient's outcomes and survival after cardiac arrest: A systematic review and meta-analysis. Medicine, 101(37), e30438. https://doi.org/10.1097/MD.0000000000030438


Lee, P. H., Lai, H. Y., Hsieh, T. C., & Wu, W. R. (2023). Using real-time device-based visual feedback in CPR recertification programs: A prospective randomised controlled study. Nurse education today, 124, 105755. https://doi.org/10.1016/j.nedt.2023.105755


Picard, C., Yang, B. G., Norris, C., McIntosh, S., & Douma, M. J. (2021). Cardiopulmonary Resuscitation Feedback: A Comparison of Device-Measured and Self-Assessed Chest Compression Quality. Journal of emergency nursing, 47(2), 333–341.e1. https://doi.org/10.1016/j.jen.2020.10.003

Intrathoracic pressure regulation (IPR)

Langhelle,  A., Strømme, T., Sunde, K., Wik, L., Nicolaysen, G., & Steen, P. A.  (2002). Inspiratory impedance threshold valve during CPR. Resuscitation, 52(1), 39–48. https://doi.org/10.1016/S0300-9572(01)00442-7


Lurie,  K. G., Mulligan, K. A., McKnite, S., Detloff, B., Lindstrom, P., &  Lindner, K. H. (1998). Optimizing standard cardiopulmonary resuscitation  with an inspiratory impedance threshold valve. Chest, 113(4), 1084–1090. https://doi.org/10.1378/chest.113.4.1084


Pirrallo,  R. G., Aufderheide, T. P., Provo, T. A., & Lurie, K. G. (2005).  Effect of an inspiratory impedance threshold device on hemodynamics  during conventional manual cardiopulmonary resuscitation. Resuscitation, 66(1), 13–20. https://doi.org/10.1016/j.resuscitation.2004.12.027


Yannopoulus  D, Aufderheide TP, Abella BS, et al. Quality CPR: An important effect  modifier in cardiac arrest clinical outcomes and intervention  effectiveness trials. Resuscitation. 2015; 94:106-113

Airway Management

Lou, J., Tian, S., Kang, X., Lian, H., Liu, H., Zhang, W., Peran, D., & Zhang, J. (2023). Airway management in out-of-hospital cardiac arrest: A systematic review and network meta-analysis. The American journal of emergency medicine, 65, 130–138. https://doi.org/10.1016/j.ajem.2022.12.029


Tang, Y., Sun, M., & Zhu, A. (2022). Outcome of cardiopulmonary resuscitation with different ventilation modes in adults: A meta-analysis. The American journal of emergency medicine, 57, 60–69. https://doi.org/10.1016/j.ajem.2022.04.027


Steffen, R., Hischier, S., Roten, F. M., Huber, M., & Knapp, J. (2023). Airway management during ongoing chest compressions-direct vs. video laryngoscopy. A randomised manikin study. PloS one, 18(2), e0281186. https://doi.org/10.1371/journal.pone.0281186


Sun, G., Wojcik, S., Noce, J., Cochran-Caggiano, N., DeSantis, T., Friedman, S., Cooney, D. R., & Knutsen, C. (2023). Are Pediatric Manual Resuscitators Only Fit for Pediatric Use? A Comparison of Ventilation Volumes in a Moving Ambulance. Prehospital emergency care, 27(4), 501–505. https://doi.org/10.1080/10903127.2022.2066235


Farkus J. (July 2, 2014). Preoxygenation and apneic oxygenation using a nasal cannula. PulmCrit (EMCrit).


Kjaergaard  B, Bavarskis E, Manusdottir SO, et al. Four ways to ventilate during  cardiopulmonary resuscitation in a porcine model: a randomized study.  Scandinavian Journal Trauma Resuscitation Emergency Medicine. 2016; 24:  67.

Ventilation Feedback

Charlton K, McClelland G, Millican K,  Haworth D, Aitken-Fell P, Norton M. The impact of introducing real time  feedback on ventilation rate and tidal volume by ambulance clinicians in  the North East in cardiac arrest simulations. Resuscitation Plus. 2021;6:100130. doi:10.1016/j.resplu.2021.100130  

Clinically Appropriate Defibrillation

Chicote  B, Aramendi E, Irusta U, Owens P, Daya M, Idris A. Value of capnography  to predict defibrillation success in out-of-hospital cardiac arrest.  Resuscitation. 2019 May;138:74-81. doi:  10.1016/j.resuscitation.2019.02.028. Epub 2019 Mar 2. PMID: 30836170;  PMCID: PMC6504568.


Frigerio  L, Baldi E, Aramendi E, Chicote B, Irusta U, Contri E, Palo A,  Compagnoni S, Fracchia R, Iotti G, Oltrona Visconti L, Savastano S;  Lombardia Cares Researchers. End-tidal carbon dioxide (ETCO2) and  ventricular fibrillation amplitude spectral area (AMSA) for shock  outcome prediction in out-of-hospital cardiac arrest. Are they two sides  of the same coin? Resuscitation. 2021 Mar;160:142-149. doi:  10.1016/j.resuscitation.2020.10.032. Epub 2020 Nov 10. PMID: 33181229.


Hubble,  M. W., Van Vleet, L., Taylor, S., Bachman, M., Williams, J. G.,  Vipperman, R., & Renkiewicz, G. K. (2021). Predictive Utility of  End-Tidal Carbon Dioxide on Defibrillation Success in Out-of-Hospital  Cardiac Arrest. Prehospital  emergency care : official journal of the National Association of EMS  Physicians and the National Association of State EMS Directors, 25(5), 697–705. https://doi.org/10.1080/10903127.2020.1828518


Segal,  N., Metzger, A., Moore, J., India, L., Lick, M., Berger, P., Tang, W.,  Benditt, D., & Lurie, K. (2017). Correlation of end tidal carbon  dioxide, amplitude spectrum area, and coronary perfusion pressure in a  porcine model of cardiac arrest. Physiological Reports, 5.  https://doi.org/10.14814/phy2.13401


Simone  Savastano, Enrico Baldi, Maurizio Raimondi, Alessandra Palo, Mirko  Belliato, Elisa Cacciatore, Valentina Corazza, Simone Molinari, Fabrizio  Canevari, Aurora I Danza, Gaetano M De Ferrari, Giorgio Antonio Iotti,  Luigi Oltrona Visconti. End-tidal carbon dioxide and defibrillation  success in out-of-hospital cardiac arrest. Resuscitation. 2017  Dec;121:71-75. doi: 10.1016/j.resuscitation.2017.09.010. Epub 2017 Sep  21

Clinically Appropriate Epinephrine

Jung,  J., Rice, J., & Bord, S. (2018). Rethinking the role of epinephrine  in cardiac arrest: the PARAMEDIC2 trial. Annals of translational  medicine, 6(Suppl 2), S129.  https://doi.org/10.21037/atm.2018.12.31


Perkins,  G. D., Ji, C., Deakin, C. D., Quinn, T., Nolan, J. P., Scomparin, C.,  Regan, S., Long, J., Slowther, A., Pocock, H., Black, J., Moore, F.,  Fothergill, R. T., Rees, N., O'Shea, L., Docherty, M., Gunson, I., Han,  K., Charlton, K., Finn, J., … PARAMEDIC2 Collaborators (2018). A  Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest. The  New England journal of medicine, 379(8), 711–721.  https://doi.org/10.1056/NEJMoa1806842


Zhong, H., Yin, Z., Kou, B., Shen, P., He, G., Huang, T., Liang, J., Huang, S., Huang, J., Zhou, M., & Deng, R. (2023). Therapeutic and adverse effects of adrenaline on patients who suffer out-of-hospital cardiac arrest: a systematic review and meta-analysis. European journal of medical research, 28(1), 24. https://doi.org/10.1186/s40001-022-00974-8


Wongtanasarasin, W., Srisurapanont, K., & Nishijima, D. K. (2023). How Epinephrine Administration Interval Impacts the Outcomes of Resuscitation during Adult Cardiac Arrest: A Systematic Review and Meta-Analysis. Journal of clinical medicine, 12(2), 481. https://doi.org/10.3390/jcm12020481

Fukuda, T., Kaneshima, H., Matsudaira, A., Chinen, T., Sekiguchi, H., Ohashi-Fukuda, N., Inokuchi, R., & Kukita, I. (2022). Epinephrine dosing interval and neurological outcome in out-of-hospital cardiac arrest. Perfusion, 37(8), 835–846. https://doi.org/10.1177/02676591211025163


Ashburn, N. P., Beaver, B. P., Snavely, A. C., Nazir, N., Winslow, J. T., Nelson, R. D., Mahler, S. A., & Stopyra, J. P. (2022). One and Done Epinephrine in Out-of-Hospital Cardiac Arrest? Outcomes in a Multiagency United States Study. Prehospital emergency care, 1–7. Advance online publication. https://doi.org/10.1080/10903127.2022.2120135


Yang, B. Y., Bulger, N., Chocron, R., Counts, C. R., Drucker, C., Yin, L., Parayil, M., Johnson, N. J., Sotoodehenia, N., Kudenchuk, P. J., Sayre, M. R., & Rea, T. D. (2022). Analysis of Epinephrine Dose, Targeted Temperature Management, and Neurologic and Survival Outcomes Among Adults With Out-of-Hospital Cardiac Arrest. JAMA network open, 5(8), e2226191. https://doi.org/10.1001/jamanetworkopen.2022.26191


Enzan, N., Hiasa, K. I., Ichimura, K., Nishihara, M., Iyonaga, T., Shono, Y., Tohyama, T., Funakoshi, K., Kitazono, T., & Tsutsui, H. (2022). Delayed administration of epinephrine is associated with worse neurological outcomes in patients with out-of-hospital cardiac arrest and initial pulseless electrical activity: insight from the nationwide multicentre observational JAAM-OHCA (Japan Association for Acute Medicine) registry. European heart journal. Acute cardiovascular care, 11(5), 389–396. https://doi.org/10.1093/ehjacc/zuac026


Yang, S. C., Hsu, Y. H., Chang, Y. H., Chien, L. T., Chen, I. C., & Chiang, W. C. (2023). Epinephrine administration in adults with out-of-hospital cardiac arrest: A comparison between intraosseous and intravenous route. The American journal of emergency medicine, 67, 63–69. https://doi.org/10.1016/j.ajem.2023.02.003


Fernando, S. M., Mathew, R., Sadeghirad, B., Rochwerg, B., Hibbert, B., Munshi, L., Fan, E., Brodie, D., Di Santo, P., Tran, A., McLeod, S. L., Vaillancourt, C., Cheskes, S., Ferguson, N. D., Scales, D. C., Lin, S., Sandroni, C., Soar, J., Dorian, P., Perkins, G. D., … Nolan, J. P. (2023). Epinephrine in Out-of-Hospital Cardiac Arrest: A Network Meta-analysis and Subgroup Analyses of Shockable and Nonshockable Rhythms. Chest, S0012-3692(23)00165-4. Advance online publication. https://doi.org/10.1016/j.chest.2023.01.033


Garfinkel, E., Michelsen, K., Johnson, B., Margolis, A., & Levy, M. (2022). Temporal Changes in Epinephrine Dosing in Out-of-Hospital Cardiac Arrest: A Review of EMS Protocols across the United States. Prehospital and disaster medicine, 37(6), 832–835. https://doi.org/10.1017/S1049023X22001418

Patient Positioning during Resuscitation (Head elevation not recommended by ACR)

Jaeger, D., Kosmopoulos, M., Voicu, S.,  Kalra, R., Gaisendrees, C., Schlartenberger, G., Bartos, J. A., &  Yannopoulos, D. (2023). Cerebral hemodynamic effects of head-up CPR in a  porcine model. Resuscitation, 193, 110039. https://doi.org/10.1016/j.resuscitation.2023.110039


Moore, J. C., Pepe, P. E., Scheppke, K. A., Lick, C., Duval, S., Holley, J., Salverda, B., Jacobs, M., Nystrom, P., Quinn, R., Adams, P. J., Hutchison, M., Mason, C., Martinez, E., Mason, S., Clift, A., Antevy, P. M., Coyle, C., Grizzard, E., Garay, S., … Labarère, J. (2022). Head and thorax elevation during cardiopulmonary resuscitation using circulatory adjuncts is associated with improved survival. Resuscitation, 179, 9–17. https://doi.org/10.1016/j.resuscitation.2022.07.039


Mohan M, Swaminathan AK. Heads Up! Data Dredging Coming Through: Heads Up Cardiopulmonary Resuscitation Does Not Improve Outcomes: February 2023 Annals of Emergency Medicine Journal Club. Ann Emerg Med. 2023;81(2):244-245. doi:10.1016/j.annemergmed.2022.12.018


Varney, J., Motawea, K. R., Mostafa, M. R., AbdelQadir, Y. H., Aboelenein, M., Kandil, O. A., Ibrahim, N., Hashim, H. T., Murry, K., Jackson, G., Shah, J., Boury, M., Awad, A. K., Patel, P., Awad, D. M., Rozan, S. S., & Talat, N. E. (2022). Efficacy of heads-up CPR compared to supine CPR positions: Systematic review and meta-analysis. Health science reports, 5(3), e644. https://doi.org/10.1002/hsr2.644


Segond, N., Terzi, N., Duhem, H., Bellier, A., Aygalin, M., Fuste, L., Viglino, D., Fontecave-Jallon, J., Lurie, K., Guérin, C., & Debaty, G. (2023). Mechanical ventilation during cardiopulmonary resuscitation: influence of positive end-expiratory pressure and head-torso elevation. Resuscitation, 185, 109685. https://doi.org/10.1016/j.resuscitation.2022.109685


Levy, Y., Hutin, A., Polge, N., Lidouren, F., Fernandez, R., Kohlhauer, M., Leger, P. L., Rambaud, J., Debaty, G., Lurie, K., Ghaleh, B., Lamhaut, L., & Tissier, R. (2022). HEAD AND THORAX ELEVATION PREVENTS THE RISE OF INTRACRANIAL PRESSURE DURING EXTRACORPOREAL RESUSCITATION IN SWINE. Shock (Augusta, Ga.), 58(3), 236–240. https://doi.org/10.1097/SHK.0000000000001971


Tan, Y. K., Han, M. X., Tan, B. Y., Sia, C. H., Goh, C. X. Y., Leow, A. S., Hausenloy, D. J., Chan, E. S. Y., Ong, M. E. H., & Ho, A. F. W. (2022). The role of head-up cardiopulmonary resuscitation in sudden cardiac arrest: a systematic review and meta-analysis. Annals of translational medicine, 10(9), 515. https://doi.org/10.21037/atm-21-4984


Bielski, K., Böttiger, B. W., Pruc, M., Gasecka, A., Sieminski, M., Jaguszewski, M. J., Smereka, J., Gilis-Malinowska, N., Peacock, F. W., & Szarpak, L. (2022). Outcomes of audio-instructed and video-instructed dispatcher-assisted cardiopulmonary resuscitation: a systematic review and meta-analysis. Annals of medicine, 54(1), 464–471. https://doi.org/10.1080/07853890.2022.2032314


Missel, A. L., Dowker, S. R., Chiola, M., Platt, J., Tsutsui, J., Kasten, K., Swor, R., Neumar, R. W., Hunt, N., Herbert, L., Sams, W., Nallamothu, B. K., Shields, T., Coulter-Thompson, E. I., & Friedman, C. P. (2023). Barriers to the Initiation of Telecommunicator-CPR during 9-1-1 Out-of-Hospital Cardiac Arrest Calls: A Qualitative Study. Prehospital emergency care, 1–8. Advance online publication. https://doi.org/10.1080/10903127.2023.2183533


Zimmerman, T. M., Neth, M. R., Tanski, M. E., Chess, L., Thompson, K., Jui, J., Sahni, R., Daya, M. R., & Lupton, J. R. (2022). Utilization and Effect of Direct Medical Oversight during Out-of-Hospital Cardiac Arrest. Prehospital emergency care, 1–7. Advance online publication. https://doi.org/10.1080/10903127.2022.2113189

Bundles of Care during SCA

Pepe,  P. E., Aufderheide, T. P., Lamhaut, L., Davis, D. P., Lick, C. J.,  Polderman, K. H., Scheppke, K. A., Deakin, C. D., O'Neil, B. J., van  Schuppen, H., Levy, M. K., Wayne, M. A., Youngquist, S. T., Moore, J.  C., Lurie, K. G., Bartos, J. A., Bachista, K. M., Jacobs, M. J.,  Rojas-Salvador, C., Grayson, S. T., … Yannopoulos, D. (2020). Rationale  and Strategies for Development of an Optimal Bundle of Management for  Cardiac Arrest. Critical care explorations, 2(10), e0214.  https://doi.org/10.1097/CCE.0000000000000214

Copyright © 2024 ACR Moonshot 2030 - Better Tomorrow - All Rights Reserved.

  • Contact Us

This website uses cookies.

We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.

Accept